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We report the isolation and structural characterization of an

Fe(II) complex containing a trigonal monopyramidal coordina-
tion geometry. Trigonal monopyramidal coordination to a metal
ion is rare1 and, to our knowledge, has not been observed
previously for Fe(II) ions.2 To stabilize this coordination
geometry, the tripodal ligand, tris-(N-isopropylcarbamoyl-
methyl)amine (H31iPr), was synthesized consisting of a tertiary
amine and three deprotonated amides with appended isopropyl
groups.3 These isopropyl groups are designed to limit access
of exogenous ligands to the Fe(II) center.4 This constrained
microenvironment can lead to iron adducts with new structural
and physical properties, as is illustrated by the formation of a
paramagnetic Fe(II)-carbon monoxide complex.
H31iPr was obtained in a one-step synthesis by treating

nitrilotriacetic acid with isopropyl amine and triphenyl phosphite
in pyridine (Scheme 1).5,6 Isolation of K[Fe1iPr] was ac-
complished by the following procedure: a solution of H31iPr
(0.200 g, 0.636 mmol) in 10 mL of dry DMF was treated with
solid KH (0.077 g, 1.9 mmol) under an Ar atmosphere. After
gas evolution ceased, solid Fe(OAc)2 (0.110 g, 0.632 mmol)
was added in one portion. The mixture was stirred (1 h) and
filtered, and the resulting light yellow solution was concentrated
to dryness under reduced pressure to yield a pale yellow powder

(0.24 g, 78%). Pale yellow crystals were obtained by diffusing
diethyl ether into a DMF solution of K[Fe1iPr].7
Trigonal monopyramidal coordination in [Fe1iPr]- is con-

firmed by an X-ray diffraction study (Figure 1A).8 Trigonal
ligation to Fe(II) is provided by the three amidate nitrogen
donors of [1iPr]3- with an average Fe-Namiddistance and Namid-
Fe-Namid angle of 2.020(3) Å and 118.7(1)°. The Fe(II) ion
lies 0.23 Å out of the trigonal plane formed by N(2)-N(3)-
N(4), displaced toward the vacant coordination site. The apical
N(1) is positioned perpendicular to the trigonal plane with an
average N(1)-Fe-Namid angle of 83.4(1)°. This positioning
of N(1) results in [Fe1iPr]- having nearC3 symmetry where the
axis coincided with the Fe-N(1) bond. The Fe-N(1) bond
length is 2.098(3) Å, which is similar to those found in other
high-spin Fe(II) complexes.9,10
The molecular structure of [Fe1iPr]- also reveals that the

appended isopropyl groups form a cavity about the Fe(II) that
encompasses the vacant axial coordination site. The isopropyl
groups have adopted bisected conformations in which one
methyl moiety of one group is oriented into the cleft formed
by the two methyl groups of a neighboring isopropyl group.
These conformations position the methyl substituents of each
isopropyl group inside the cavity with the methine hydrogens
disposed outside the cavity toward the amide carbonyl groups.
This arrangement of appended groups occurs, in part, to
minimize the steric interactions between the isopropyl and
carbonyl groups of each amide moiety.11,12

The “gearing” of isopropyl groups13 observed in [Fe1iPr]-
produces a flexible cavity that can accommodate exogenous
ligand binding to the Fe(II) center to form five-coordinate
complexes. This is demonstrated by the formation of [Fe1iPr-
(CO)]- whose molecular structure is shown in Figure 1B.14Note
that in [Fe1iPr(CO)]- the isopropyl groups have rotated, enlarg-
ing the size of the cavity, as can be seen by the 17.4° reduction
in the average angle between the planes formed by Oamid-
Camid-Namid:Namid-Cmethine-Hmethine. The binding of an exog-
enous ligand to [Fe1iPr]- contrasts with the results found for
TMP complexes of [1t-Bu]3-, a ligand similar to [1iPr]3- except
for the appendedtert-butyl groups.1g In these complexes the
conformations oft-Bu groups prevent binding of exogenous
ligands to the metal.
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The binding of CO causes a reduction in the Fe-N bond
distances. As shown in Table 1, the average Fe-Namiddistance
is shortened by 0.023 Å (to 1.997(3) Å) in [Fe1iPr(CO)]-, while
the Fe-N(1) distance has been reduced to 1.991(3) Å. This
shortening of bond lengths is suggestive of a reduction in spin
state at the Fe(II) center.15 Carbon monoxide binding to Fe(II)
normally produces complexes that are diamagnetic,15,16yet both
[Fe1iPr]- and [Fe1iPr(CO)]- are paramagnetic. At room tem-
perature [Fe1iPr]- is high spin with anµeff ) 5.38µB, a magnetic
moment that is similar to those reported for otherS) 2 Fe(II)
complexes.17 In contrast, [Fe1iPr(CO)]- has anµeff ) 3.41(2)
µB, consistent with anS ) 1 formulation.18 The Mössbauer
spectrum of a powder sample of [Fe1iPr(CO)]- at 4.2 K shows
a single quadrupole doublet with parameters relative to iron
metal ofδ ) 0.26 and∆Eq ) 1.07 mm/s. The spectrum is not
affected by a weak applied magnetic field of 45 mT, which is
consistent with a non-Kramers spin system for the complex.
The powder Mo¨ssbauer spectrum of [Fe1iPr]- at 4.2 K exhibits

a paramagnetic pattern spanning approximately 9 mm/s in a
field of 45 mT; this paramagnetic spectrum collapses to a single
quadrupole doublet at 77 K with parameters ofδ ) 1.05 and
∆Eq ) 3.31 mm/s. The Mo¨ssbauer parameters observed for
[Fe1iPr]- are typical of high-spin Fe(II) centers, while those
found for [Fe1iPr(CO)]- are within the range of the few known
S) 1 Fe(II) complexes for which Mo¨ssbauer data are avail-
able.19,20 Powder and frozen solution EPR spectra of [Fe1iPr]-
at 4.2 K exhibit an integer spin resonance nearg ) 8, which is
typical of S ) 2 Fe(II) complexes and consistent with the
observation of a paramagnetic Mo¨ssbauer spectrum in a weak
applied field.21 Extended Hu¨ckel calculations22 indicate that
for [Fe1iPr]- the dz2 (a) and dx2-y2, dxy (e) orbitals have nearly
the same energy and lie higher than the dxzand dyz (e) orbitals;
upon CO binding the dz2 orbital is raised significantly leading
to an orbital arrangement that gives rise to the paramagnetism
found in [Fe1iPr(CO)]-.
The S ) 1 spin state observed in [Fe1iPr(CO)]- represents

the first example of a paramagnetic Fe(II)-CO complex. The
formation of this complex results from the ability of the [1iPr]3-

to control the cavity architecture around Fe(II) to restrict the
binding of additional ligands and produce a trigonal bipyramidal
coordination geometry. TheS) 1 state is readily achieved in
[Fe1iPr(CO)]-, but not in six-coordinate Fe(II) carbonyl com-
plexes, owing to the inaccessibility of theS ) 0 in trigonal
symmetry. The binding of CO to [Fe1iPr]- is unusually weak:
[Fe1iPr]- reversibly binds CO with aKCO of 0.0091 Torr-1.23
This binding constant is significantly lower than those reported
for most Fe(II) complexes, especially for complexes having
linear Fe-C-O motifs as is found in [Fe1iPr(CO)]-.15a,24 A
possible explanation for this lower CO binding constant is that
the energy difference between statesS ) 2 and S ) 0 in
distorted-octahedral symmetry is significantly greater than the
energy difference between statesS) 2 andS) 1 in trigonal
symmetry.25 The constrained microenvironment must also affect
exogenous ligand binding, given the large structural reorganiza-
tion observed upon CO binding (Vide supra). The relative
magnitudes of these electronic and structural effects on exog-
enous ligand binding can be further examined because the design
of [1R]3- allows for convenient access to ligands with cavities
having different structural and physical properties.26 Studies
to address the relative contributions of these effects are in
progress.
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Figure 1. Thermal ellipsiod diagrams of [Fe1iPr]- (A, left) and
[Fe1iPr(CO)]- (B, left) and space-filling representations of each complex
viewed down their respective pseudo 3-fold axis. The ellipsoids are drawn
at the 50% probability level, and hydrogens are removed for clarity.

Table 1. Selected Bond Distances and Angles for [Fe1iPr]- and
[Fe1iPr(CO)]-

distance
(Å) or

angle (deg) [Fe1iPr]- [Fe1iPr(CO)]-

distance
(Å) or

angle (deg) [Fe1iPr]- [Fe1iPr(CO)]-

Fe-N(1) 2.098(3) 1.991(3) N(2)-Fe-N(3) 116.8(1) 120.0(1)
Fe-N(2) 2.017(3) 1.995(3) N(2)-Fe-N(4) 121.4(1) 117.3(1)
Fe-N(3) 2.017(3) 2.000(3) N(3)-Fe-N(4) 117.8(1) 116.4(1)
Fe-N(4) 2.026(3) 2.001(3) Fe-C(16)-O(4) 179.1(3)
Fe-C(16) 1.749(3) d[Fe-Namid]a 0.232 0.293

aDisplacement of Fe from the plane formed by N(2)-N(3)-N(4).
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